產(chǎn)品詳情介紹
本產(chǎn)品以RNA為模板,在同一反應體系中,合成第一鏈cDNA的同時去除RNA模板中殘留的基因組DNA。反應結束后,只需在85℃加熱5秒鐘,即可同時失活TranScript? RT/RI與gDNA Remover。
? 在同一反應體系中,同時完成反轉錄與基因組DNA的去除,操作簡便,降低污染機率。
? 產(chǎn)物用于qPCR:反轉錄15分鐘;產(chǎn)物用于PCR:反轉錄30分鐘。
? 反應結束后,同時熱失活RT/RI與gDNA Remover。與傳統(tǒng)的用DNase I預處理RNA的方法相比,避免了處理后熱失活DNase I對RNA的損傷。
? 操作簡單。
?合成片段≤12 kb。
使用前請將各組分點甩離心
產(chǎn)品穩(wěn)定性
使用不同批次產(chǎn)品分別以人總RNA為模板,進行RT-PCR檢測,1.0%瓊脂糖凝膠電泳分析反轉錄效果。
使用不同批次產(chǎn)品分別以人100 ng總RNA、人100 ng總RNA+200 ng gDNA、200 ng gDNA為模板,進行RT-PCR檢測,1.0%瓊脂糖凝膠電泳分析模板DNA去除效果;qRT-PCR檢測18S RNA表達量。
與競品的比較
使用TransGen、Company TA和Company TH產(chǎn)品,分別以人100 ng總RNA、人100 ng總RNA+200 ng gDNA、200 ng gDNA為模板,進行RT-PCR檢測, 1.0%瓊脂糖凝膠電泳分析模板DNA去除效果;qRT-PCR檢測18S RNA表達量。
1 Chen S, Xu K, Kong D, et al. Ubiquitin ligase OsRINGzf1 regulates drought resistance by controlling the turnover of OsPIP2; 1[J]. Plant Biotechnology Journal, 2022.(IF 13.26)
2 Li Z, Wang B, Luo W, et al. Natural variation of codon repeats in COLD11 endows rice with chilling resilience[J]. Science advances, 2023.(IF 14.95)
3 Yan Y, Sun J, Ji K, et al. High incidence of the virus among respiratory pathogens in children with lower respiratory tract infection in northwestern China[J]. Journal of Medical Virology, 2023.(IF 20.69)
4 Zhang W, Pan X, Xu Y, et al. Mevalonate improves anti-PD-1/PD-L1 efficacy by stabilizing CD274 mRNA[J]. Acta Pharmaceutica Sinica B, 2023.(IF 14.50)
5 Zhao K, Wang L, Qiu D, et al. PSW1, an LRR receptor kinase, regulates pod size in peanut[J]. Plant Biotechnology Journal, 2023.(IF13.80)
6 Fan H, Quan S, Ye Q, et al. A molecular framework underlying low-nitrogen-induced early leaf senescence in Arabidopsis thaliana[J]. Molecular Plant, 2023.(IF 27.50)
7 Liu W, Yao Q, Su X, et al. Molecular insights into Spindlin1-HBx interplay and its impact on HBV transcription from cccDNA minichromosome[J]. Nature Communications, 2023.(IF 16.60)
8 Guan J, Wang G, Wang J, et al. Chemical reprogramming of human somatic cells to pluripotent stem cells[J]. Nature, 2022.(IF 49.00)
9 Zhang Y, Chen W, Wu D, et al. Molecular basis for cell-wall recycling regulation by transcriptional repressor MurR in Escherichia coli[J]. Nucleic acids research, 2022.(IF 16.97)
10 Wang R, Xue Y, Fan J, et al. A systems genetics approach reveals PbrNSC as a regulator of lignin and cellulose biosynthesis in stone cells of pear fruit[J]. Genome Biology, 2021.(IF 17.90)
11 Guo Z, Cao H, Zhao J, et al. A natural uORF variant confers phosphorus acquisition diversity in soybean[J]. Nature Communications, 2022.(IF 17.69)
12 Zhao Z, Ning J, Bao X, et al. Fecal microbiota transplantation protects rotenone-induced Parkinson’s disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis[J]. Microbiome, 2021.(IF 16.83)
13 Hu B, Li B, Li K, et al. Thermostable ionizable lipid-like nanoparticle (iLAND) for RNAi treatment of hyperlipidemia[J]. Science advances, 2022.(IF 14.95)
14 Wang B, Zhao M, Su Z, et al. RIIβ‐PKA in GABAergic Neurons of Dorsal Median Hypothalamus Governs White Adipose Browning[J]. Advanced Science, 2022.(IF 17.52)
15 Chen J, Ou Y, Luo R, et al. SAR1B senses leucine levels to regulate mTORC1 signalling[J]. Nature, 2021.(IF 42.77)
16 Liu S, Liu C, Lv X, et al. The chemokine CCL1 triggers an AMFR-SPRY1 pathway that promotes differentiation of lung fibroblasts into myofibroblasts and drives pulmonary fibrosis[J]. Immunity, 2021.(IF 31.74)
17 Li W, Ali T, Zheng C, et al. Anti-depressive-like behaviors of APN KO mice involve Trkb/BDNF signaling related neuroinflammatory changes[J]. Molecular Psychiatry, 2022.(IF 15.99)
18 Zhao M, Wang B, Zhang C, et al. The DJ1-Nrf2-STING axis mediates the neuroprotective effects of Withaferin A in Parkinson’s disease[J]. Cell Death & Differentiation, 2021.(IF 15.82)
19 Liu C, Liu B, Zhao J, et al. Nd3+‐sensitized upconversion metal–organic frameworks for mitochondria‐targeted amplified photodynamic therapy[J]. Angewandte Chemie International Edition, 2020.(IF 12.25)
20 Liu J C, Li L, Yan H C, et al. Identification of oxidative stress–related Xdh gene as a di (2‐ethylhexyl) phthalate (DEHP) target and the use of melatonin to alleviate the DEHP‐induced impairments in newborn mouse ovaries[J]. Journal of pineal research, 2019.(IF 15.22)
21 Chen J, Ou Y, Yang Y, et al. KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing[J]. Nature, 2018.(IF 40.13)